
CSCI 210: Computer Organization

Lecture 10: Control Flow

Stephen Checkoway

Slides from Cynthia Taylor

CS History: The If-Else Statement
• Haskell Curry and Willa Wyatt are the first people to describe performing different

instructions based on the result of a previous calculation, on the Eniac in 1946

• Early assembly language instructions jumped to a new memory location based on a specific
condition, were not general purpose

• Fortran (1957) specifying jumps to three locations at once, depending on whether a
calculation was negative, zero, or positive, and gave it the name "if.”

• Flow-matic (Grace Hopper, 1958), used comparisons between numbers and used the name
“otherwise” for else

• In 1958, a German computing organization proposed an if statement that took an arbitrary
Boolean statement, had an ”else” case, and returned control to immediately after the if/else
statement after completing the statement

Today: Program control flow

• High level languages have many ways to control the order of
execution in a program: if, if-else, for loops, while loops

• Today we will look at how these higher order concepts are built
out of MIPS control flow instructions

Control Flow

• Recall the basic instruction cycle

– IR = Memory[PC]

– PC = PC + 4

• Both branch and jump instructions change the value of the
program counter

Control Flow - Instructions

• Conditional

– beq, bne: compare two registers and branch depending on the
comparison

– Change the value of the program counter if a condition is true

• Unconditional

– j, jal, jr: jump to a location

– Always change the value of the program counter

Control Flow - Labels

• In assembly, we use labels to help us guide control flow. Labels
can be the target of branch or jump instructions.

• Example:

j label

…

label: add $t1, $t0, $t2

• Assemblers are responsible for translating labels into
addresses.

Jump

• j label

– Go directly to the label (i.e. PC = label)

• jal label

– Go directly to the label (i.e., PC = label) and set the link register (we’ll
discuss this later)

• jr register

– Go directly to the address specified in the register

if (X == 0)

 X = Y + Z;

High-level code

Assuming X, Y, and Z are integers in registers $t0, $t1,
and $t2, respectively, which are the equivalent assembly
instructions?

 beq $t0,$zero, Label

Label: add $t0, $t1, $t2

 bne $t0,$zero, Label

 add $t0, $t1, $t2

Label:

A

B

D – None of these is correct.

 beq $t0,$zero, Label

 add $t0, $t1, $t2

Label:

C

If (x < y): Set Less Than

• Set result to 1 if a condition is true
– Otherwise, set to 0

• slt rd, rs, rt
– if (rs < rt) rd = 1; else rd = 0;

• slti rt, rs, constant
– if (rs < constant) rt = 1; else rt = 0;

• Use in combination with beq, bne
 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

• Why not blt, bge, etc?

• Hardware for <, ≥, … slower than =, ≠

– Combining with branch involves more work per instruction

– beq and bne are the common case

slt $t2, $t0, $t1

 bne $t2, $zero, x

addi $t0, $t0, 1

x: next instruction

A

High level code often has code like this:
if (i < j) {
 i = i + 1;
}
Assume $t0 holds i and $t1 holds j. Which of the following is the correct translation of
the above code to MIPS assembly (recall $zero is always 0):

slt $t2, $t0, $t1

 bne $t2, $zero, x

x: addi $t0, $t0, 1

 next instruction

B C

slt $t2, $t0, $t1

 beq $t2, $zero, x

 addi $t0, $t0, 1

x: next instruction

D None of the above slt rd, rs, rt
if (rs < rt) rd = 1; else rd = 0;

Signed vs. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

slt vs sltu

$s0 = 1111 1111 1111 1111 1111 1111 1111 1111

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, $s1 sltu $t0, $s0, $s1

A $t0 = 1 $t0 = 1

B $t0 = 0 $t0 = 1

C $t0 = 0 $t0 = 0

D $t0 = 1 $t0 = 0

slt rd, rs, rt
if (rs < rt) rd = 1; else rd = 0;

Questions on BEQ, BNE, SLT?

How to access an array in a for loop

• Can’t programmatically change the offset

• Need to change the base address instead

• Add 4 to the base address every time you want to move to the
next element of the array (assuming an array of 4-byte values)

for (i=0; i < 10; i++){

 A[i] = 0;

}

 move $t0, $zero

 li $t1, 40

loop: beq $t0, $t1, end

 add $t2, $s0, $t0

 sw $zero, 0($t4)

 addi $t0, $t0, 4

 j loop

end:

*Assume base address of A is in $s0

for (i = 0; i < 10; i++){

 A[i+1] = A[i];

}

C Code

Assume the base address
of A is in $t0, and i is in
$t1. Each element of A is 4
bytes. What is the
equivalent assembly?

addi $t2, $zero, 10
 add $t1, $zero, $zero
for: bne $t1, $t2, end
 lw $t3, $t1($t0)
 addi $t1, $t1, 1
 sw $t3, $t1($t0)
 j for
end:

A B C

D – More than one of these

addi $t2, $zero, 40
 add $t1, $zero, $zero
for: beq $t1, $t2, end
 add $t4, $t0, $t1
 lw $t3, 0($t4)
 addi $t1, $t1, 4
 add $t4, $t0, $t1
 sw $t3, 0($t4)
 j for
end:

addi $t2, $zero, 10
 add $t1, $zero, $zero
 bne $t1, $t2, end
 add $t4, $t0, $t1
 lw $t3, 0($t4)
 addi $t1, $t1, 1
 add $t4, $t0, $t1
 sw $t3, 0($t4)
end:

E – None of these

if(X == 0)

 X = Y + Z;

else

 X = Z + Z;

C Code

Assuming X, Y, and Z are
integers in registers $t0,
$t1, and $t2, respectively,
which are the equivalent
assembly instructions?

bne $t0, $zero, false
 add $t0, $t1, $t2
false: add $t0, $t2, $t2

A

bne $t0, $zero, false
 add $t0, $t1, $t2
 j endif
false: add $t0, $t2, $t2
endif:

B

bne $t0, $zero, false
 j endif
 add $t0, $t1, $t2
false: add $t0, $t2, $t2
endif:

C

D – None of the above

while (i < 10){

 i = i + 1;

}

C Code

Assume i is in $t0. What is
the equivalent assembly?

w: slti $t2, $t0, 10
 beq $t2, $zero, end
 addi $t0, $t0, 1
 j w
end:

A B C

D – More than one of these

w: slti $t2, $t0, 10
 beq $t2, $zero, end
 addi $t0, $t0, 1
end:

slti $t2, $t0, 10
w: beq $t2, $zero, end
 addi $t0, $t0, 1
 j w
end:

E – None of these

slti rt, rs, imm
if (rs < imm) rd = 1; else rt = 0;

Reading

• Next lecture: Procedures

– Section 2.9

• Problem set: Due Friday

• Lab 2: Due Monday

	Slide 1: CSCI 210: Computer Organization Lecture 10: Control Flow
	Slide 3: CS History: The If-Else Statement
	Slide 4: Today: Program control flow
	Slide 5: Control Flow
	Slide 6: Control Flow - Instructions
	Slide 7: Control Flow - Labels
	Slide 8: Jump
	Slide 9
	Slide 10: If (x < y): Set Less Than
	Slide 11: Branch Instruction Design
	Slide 12
	Slide 13: Signed vs. Unsigned
	Slide 14: slt vs sltu
	Slide 15: Questions on BEQ, BNE, SLT?
	Slide 16: How to access an array in a for loop
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Reading

